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Abstract — Smafl sphericaf objects have been found usefnf as impedance

matching elements in rectangular wavegnides. In this paper, we develop a

formula for the reflection coefficient produced by a conducting sphericaf

ball in contact with the broad wall of a rectangular wavegnide. The solution

involves replacement of the obstacle by equiwdent electric and magnetic

dipoles but employs no ad hoe assumptions to determine the dipole

moments and to this extent is exact. The theory is fonnd to yield good

results for atl balls likely to be practicaf as impedance matching elements.

1. INTRODUCTION

T
HE USEFULNESS of a conducting spherical obstacle

as a means for matching out small reflections in a

rectangular waveguide propagating the fundamental (HIO )

mode was pointed out some time ago by Somlo and

Hollway [1]. Provided that the ball at least has a ferrous

core, it can be positioned from outside the waveguide by a

magnet, which is often convenient in experimental work.

These authors noted that the equivalent shunt susceptance

produced by such an obstacle is capacitive and that, for a

ball positioned on the center of one broad wall, the magni-

tude of the reflection coefficient which it generates remains

constant within ten percent over the entire waveguide

band.

Based on the results of a number of measurements at X

band in WG16 (RG52\U), Somlo and Hollway were able

to derive an empirical formula for the reflection coefficient

generated by a conducting ball placed centrally on the

broad wall of the guide, as shown in Fig. 1. For O < r/b <

0.47, they concluded that

Irl =
46.4( r/b)3

(1)
1+89.6 (r,/b)4

which, for r/b <0.15, may be approximated with an error

not exceeding five percent by the simpler form

Irl = 46.4( r/b)3. (2)

Somlo and Hollway went on to remark that, for the

behavior they had observed, “no theoretical basis . . .has

been found.”
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Fig. 1. Waveguide, dimensions a X b, with conducting sphere, radius r
touching the center of the broad wafl. Coordinate axes .x and y are

along broad and narrow watls, respective y, Propagation is in the z
direction.

II. CRITIQUE OF EXISTING SOLUTIONS

The behavior of a small obstacle in a waveguide maybe

determined by replacing it with equivalent electric and

magnetic dipoles, the strength of which depend on the

exciting fields and the electric and magnetic polarisabilities

of the obstacle. These polarisabilities are dyadics, the ele-

ments in which are proportional to the volume of the

obstacle, the proportionality being determined by the de-

tailed geometry of the obstacle. Thus, it is not surprising

that the magnitude of the reflection coefficient should have

the form shown in (2). Additionally, we shall soon see that

the capacitive nature of the susceptance is not a matter for

surprise.

Referred to a set of principal axes which diagonalise the

dyadic, for some simple geometries it is possible to de-

termine these polarisabilities by appropriate analysis. An

isolated ellipsoid, of which an isolated sphere is but a

special case, is an example. When placed in a waveguide,

the sphere is no longer isolated but is part of an infinite,

planar array of which all the other members are its images

in the waveguide walls. It can be assumed safely that its

polarisability remains the same as that of an isolated

sphere only if the elements in the array are sufficiently

separated. When this is not the case, two effects are in

evidence. The first is that the exciting field will be modified

by contributions due to the images, but the more serious is

that the charge and current distributions induced on the

obstacle may no longer be similar to those experienced in

isolation.

When the obstacle is not near any of the waveguide

walls, only the first is of importance and may be taken into
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account with sufficient accuracy by quasistatic arguments,

the polarisabilities used being those of an isolated obstacle.

This can be expected to give an acceptable result for a

sphere suspended on the longitudinal axis of symmetry of

the waveguide, but for a sphere placed on the broad wall,

this can involve discrepancies between theory and measure-

ment in the order of 2:1.

A theoretical solution to this problem which gives better

agreement with experiments has been published [2], It

relies on replacing the sphere lying on the face of the

waveguide by an equivalent half ellipsoid. That the reflec-

tion coefficient is capacitive and proportional to obstacle

volume is then readily determined. However, that this must

be the case for any small obstacle, whatever its shape, is

easy to see; the ball acts as a perturbation to remove

energy from the field in the region where the electric

energy density is the greater and, to the extent that this

field is uniform, the amount of energy removed is propor-

tional to the obstacle volume [3]. Given that determination

of the equivalent ellipsoid depends on ad hoc assumptions,

the nature of which would not be evident without knowl-

edge of the experimental result with which it is desired to

achieve correspondence, it is difficult to see that this solu-

tion adds much to fundamental understanding of the prob-

lem.

More recently, a finite-element solution has appeared [4].

This solution avoids the approximations and ad hoc as-

sumptions of [2], but leads only to a numerical result. The

present result takes form of an analytic formula which

thereby provides a greater physical insight into the prob-

lem.

111. THEORETICAL DEVELOPMENT

A. Formal Solution

In this paper, we shall adopt a different approach. We

shall assume, as has already been made evident, that the

ball lies on the broad wall of the waveguide but with the

additional restriction that it is not too close to the narrow

walls. We then image the ball in the wall on which it lies so

that we are left to analyze the effect of a dumbbell-shaped

obstacle consisting of two osculating spheres which lies

along the horizontal centerline of a rectangular waveguide

having cross-sectional dimensions a X B, where B = 2b.

Fig. 2 shows the result. If we determine the electric and

magnetic polarisability dyadics for this dumbbell, we can,

provided that it does not come too close to the side walls,

estimate the modifying effect on the exciting field of the

images by the usual quasistatic arguments.

Determination of the elements of the polarisability dy-

adics is to be the subject of a separate paper by Cashman

[5], and here we shall simply use his results in the endeavor

outlined above. We begin by outlining briefly the formal
solution to the problem, full details of which can be found

in standard texts [6]. We assume that the long axis of the

dumbbell lies in the plane z =0, Then, the electric and

magnetic fields incident on the obstacle are

E, = V+ Eloe ‘@’”z

E, = V+(lilo+ 7iz10)e-Jp’0=

(3)

(4)

Y

1

— .x

Fig. 2. Doubled waveguide containing a dumbbell obstacle representing
the original guide and the sphere and images in the xz plane. New
dimension B = 2 b. Sphere and its image have been moved off center to
distance c from left-hand wrdl.

where

zlo=-Pkozo(aBk;zoB,o)l’2sin(~)(5)

( 2 )“’sin(;)
~10=‘fllo aBk~zo/310

72.lo=-~~:(aBk;zoB1O )’’2cos(;) (7,

(6)

are the normal mode functions for the H lo mode in an

a X B rectangular waveguide, and in which

&O= ko~l - (~o/~C)2 the guide wavenumber,

k.= f the free-space wavenumber,
o

A. the free space wavelength,

AC= 2a the cutoff wavelength, and

20 thecharacteristic impedance of space.

The incident fields will induce in the dumbbell electric

and magnetic dipole moments

F = EOI,” EII(X, Y,Z)=(C,O!O) (8)

—— —
17= Amo IiLl(x, y,z)=(c,o,o) (9)

where A=., A=n are dyadics to be determined which depend

on the electric and magnetic polarisabilities of the dumb-

bell and the disposition of its images. By symmetry, it is

clear that the principal axes of the dyadic must lie along

the x, y, and z i~es, so that we may write

In terms of these components, (8) and (9) with (3) and (4)

give

P = V+ CoA@lol(x, ~)=(C,O) (12)

~= V+ (A~xxfilo + Amz~zlo)l(x, v)=(c,o). (13)
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In z <0, these generate scattered fields

~, = ~- ~loeJ&O~ (14)

Z, = V- (– ZIO + 7iZ10)eJP’@. (15)

Application of the Lorentz reciprocity theorem then serves

to show that

v- =+ju[po(zlo + ~zlo )m-z,o.~]l(x,y)= (co) (16)

whence the reflection coefficient

r– ‘-
v+

(17)

For a ball on the center of the broad wall of the

waveguide (c= ~a ), this simplifies to

[

1-_ .ikO ibA k.——

1
2ab k. ~xx ~lo “Y-Y “

(18)

This completes the formal solution of the problem. It

r~ma~ns only to determine certain components of the

x,, xm.

B. Determination of the Polarisability Dyadics

Provided that the dumbbell and its images are suffi-

ciently separated, the presence of the images does not

cause current and charge patterns to be induced which

differ substantially from those which occur in iso~tio~,

and it has been shown that the elements of the A–,, Am

dyadics may be written as

A
LYe,muu

“mu” = 1– C,, muae, muu
(19)

where u = x, y, z and ae, ~1~U are the corresponding ele-

ments of the electric or magnetic polarisability dyadic for

an isolated dumbbell. c’, ~ ~ is an interaction constant,

considered again below, w’tich takes into account that the

exciting field is modified by the presence of the images.

The dyadic elements a,~,, a~XX, and a~:= have been

determined by Cashman [5] using a quasistatic approach

justified by the fact that the dumbbell is electrically small.

Under an imposed field, a charge separation (in the case of

a magnetic field, a separation of hypothetical magnetic

charge) takes place, determined by appropriate boundary

conditions. The boundary condition is expressed as an

integral equation which is solved numerically for the charge

distribution. The dipole moment is found from the charge

distribution and the polarisability elements a,, ~,,U then

Fig. 3 y-directed electric dipole within the doubled waveguide (shown

in heavy lines) and its images in the conducting walls,

follow. The results are

a ,YY = 59.65r3 (20)

lxmxx = amzz = –14.02r3. (21)

It is interesting to compare these results with those ob-

tained by simply doubling up the corresponding polarisa-

bilities of an isolated sphere, If we did this, we would get

lx,Yp = 25.13r3, a~xx = a~z= = – 12.57r3. To do so is to fail

to take account of the changes in the charge and current

distributions on the ball which result from its immediately

adjacent image in the broad wall on which it rests. The

resulting errors are seen to be very significant.

To determine the interaction constants, we follow the

quasistatic theory of Collin [6]. Consider first the y-

directed electric dipole moment. This images positively in

the broad walls of the guide (to which it is perpendicular)

and negatively in the narrow (to which it is parallel). The

result is the alternate lines of positively and negatively

directed dipoles shown in Fig. 3 which form the basis to

determine the component of the polarizing field at the

dumbbell due to its images. For this case, we find that

c~Y=&[Sl+Sz–S3–S~] (22)

where

S,= ~ f, 2(2nB)2-(2ma)2
~=-~ n=-~ [(~nB)2+(2ma)2]5/2

(23)

S2= ~ -g 2(2JzB –2b)2– (2ma)2

~=-~ n=-cc [(2nB-2b)2+(2ma)2] 5’2 ’24)

2(2nBz– (2ma –2c)2

[(2nB)2+(2ma -2c)Z]’/Z (25)

2(2nB –2b)2–(2ma –2c)2

~=—~~=—m [(2nB -2b)2+(2ma -2c)2]”2 “

(26)

The superscript prime on the first of the summations

indicates that the n = O term is to be omitted. These series

are readily summed to convergence by computer.
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Turning now to the magnetic dipoles and considering the

x-directed dipoles first, we observe that we have a situation

exactly analogous to that just considered. This follows

because the dipole images positively in the walls to which it

is parallel and negatively in those to which it is perpendicu-

lar. Hence, we have at once that C~X = CeY. This leaves

only the z-directed magnetic dipoles to consider. These lie

parallel to the broad and narrow walls of the guide and so

all the images are positive. Hence, we have

cmz=-&+s2+s3+s4]. (27)

Note that, because they all lie on z = O, there is no interac-

tion between the x- and z-directed sets of magnetic di-

poles.

Inserting these results into (18), we see that the reflection

coefficient is indeed capacitive and to the lowest order in r

is proportional to r3. However, if our result is expanded as

a power series in r, the next term will involve rc. This is to

be contrasted with Somlo and Hollway’s empirical formula

which, if rewritten as a power series, has a second term

with an r7 dependence. This may perhaps be reconciled by

noting that the empirical result applies to a range of ball

sizes extending beyond that for which it is valid simply to

replace the ball by electric and magnetic dipole moments

located at its center, the higher order multiples needing to

be considered in a complete solution.

IV. SOME RESULTS

Using our formula (18) we have computed 11’I as a

function of ball diameter at band center (9.6 GHz) in

WG16 (RG52/U) for which a = 22.86mm (0.900 in), b =

10.16mm (0,400 in). It is shown in Fig. 4, where it is

compared with the results of Somlo and Hollway, both

their measurements and their empirical formula. The agree-

ment is seen to be very good for any ball below 5mm in

diameter or, to put it another way, for any reflection

coefficient with a magnitude below 0.5. Given the intended

use of the device-for Vernier matching-it is seen that

the theory gives an adequate description of its performance

over all practical ball sizes.

In Fig. 5, we present for 3-mm and 4-mm-diam balls

located on the center of the broad wall of WG16 a portrayal

of 117I against frequency in the range 8–11 GHz. The result

supports Somlo and Hollway’s assertion of the relative

insensitivity of the reflection coefficient to frequency.

Lastly, also for 3-mm and 4-mm-diam balls but this time at

band center, we present in Fig. 6 the result of moving the

ball transversely in the guide over the range a/4< c <

3a/4, this being about as close to the narrow wall as it is

possible to bring the ball and still use polarisabilities

calculated for an isolated dumbbell. It is observed that,

rather than having to replace the ball in order to vary the

reflection coefficient, useful variation can be achieved sim-

ply by moving it off guide center. The reflection coefficient
falls off because the exciting fields, and therefore the

dipole moments which they produce, are generally weaker

off center. This does not, of course, apply to the z-directed
magnetic dipole moment, which is strongest at the edge of
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Fig. 4. Reflection coefficient magnitude Irl as a function of ball diame-
ter d. Circles are experirnentaf points of Somlo and Hollway, Full curve
is (l). Dashed curve is present theoretical result (2) with ball on the
center of the broad face of WG16 guide. Frequency is 9.6 GHz.
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center of the broad face of WG16 guide.
Ball ix on

O-l

.4 - %’
:..=

~ ~&m
o

024681011214 16

C (mm)

Fig. 6. lrl as function of distance c from narrow face of WG16 guide
for two-ball diam. Frequency is 9.6 GHz.

the guide, but the effect of which in the expression for lrl

is subtractive from that due to the x-directed magnetic

dipole.

V. CONCLUSION

This paper has considered the problem of computing the

reflection coefficient produced by a conducting ball when

in contact with the broad wall of a rectangular waveguide,

a device which has been proposed as a convenient match-

ing element. It has been shown that the reflection coeffi-

cient is capacitive, to the lowest order proportional to the
cube of the ball radius, and, for a given size ball, is



586 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTF32, NO. 6, JUNE 1984

relatively insensitive to frequency. These conclusions con-

firm earlier empirical work by Sornlo and Hollway. The

solution’ is based on the replacement of the ball by a set of

electric and magnetic dipole moments located at it center.

Strictly, it is therefore applicable only to small balls, but

comparison with measurement shows that it is adequate up

to the largest likely to be used in practice as a matching

element.
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