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Reflection Coefficient of a Conducting
Sphere on the Broad Wall of a
Rectangular Waveguide
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Abstract —Small spherical objects have been found useful as impedance
matching elements in rectangular waveguides. In this paper, we develop a
formula for the reflection coefficient produced by a conducting spherical
ball in contact with the broad wall of a rectangular waveguide. The solution
involves replacement of the obstacle by equivalent electric and magnetic
dipoles but employs no ad hoc assumptions to determine the dipole
moments and to this extent is exact. The theory is found to yield good
results for all balls likely to be practical as impedance matching elements.

1. INTRODUCTION

HE USEFULNESS of a conducting spherical obstacle

as a means for matching out small reflections in a
rectangular waveguide propagating the fundamental (H,,)
mode was pointed out some time ago by Somlo and
Hollway [1]. Provided that the ball at least has a ferrous
core, it can be positioned from outside the waveguide by a
magnet, which is often convenient in experimental work.
These authors noted that the equivalent shunt susceptance
produced by such an obstacle is capacitive and that, for a
ball positioned on the center of one broad wall, the magni-
tude of the reflection coefficient which it generates remains
constant within ten percent over the entire waveguide
band.

Based on the results of a number of measurements at X
band in WG16 (RG52/U), Somlo and Hollway were able
to derive an empirical formula for the reflection coefficient
generated by a conducting ball placed centrally on the
broad wall of the guide, as shown in Fig. 1. For 0 <r/b <
0.47, they concluded that

_464(r/b)’

1+89.6(r/b)* M
which, for /b < 0.15, may be approximated with an error
not exceeding five percent by the simpler form

IT| = 46.4(r/b)’. (2)
Somlo and Hollway went on to remark that, for the

behavior they had observed, “no theoretical basis...has
been found.”
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Fig. 1. Waveguide, dimensions a X b, with conducting sphere, radius r
touching the center of the broad wall. Coordinate axes x and y are
along broad and narrow walls, respectively. Propagation is in the z
direction.
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II. CRITIQUE OF EXISTING SOLUTIONS

The behavior of a small obstacle in a waveguide may be
determined by replacing it with equivalent electric and
magnetic dipoles, the strength of which depend on the
exciting fields and the electric and magnetic polarisabilities
of the obstacle. These polarisabilities are dyadics, the ele-
ments in which are proportional to the volume of the
obstacle, the proportionality being determined by the de-
tailed geometry of the obstacle. Thus, it is not surprising
that the magnitude of the reflection coefficient should have
the form shown in (2). Additionally, we shall soon see that
the capacitive nature of the susceptance is not a matter for
surprise.

Referred to a set of principal axes which diagonalise the
dyadic, for some simple geometries it is possible to de-
termine these polarisabilities by appropriate analysis. An
isolated ellipsoid, of which an isolated sphere is but a
special case, is an example. When placed in a waveguide,
the sphere is no longer isolated but is part of an infinite,
planar array of which all the other members are its images
in the waveguide walls. It can be assumed safely that its
polarisability remains the same as that of an isolated
sphere only if the elements in the array are sufficiently
separated. When this is not the case, two effects are in
evidence. The first is that the exciting field will be modified
by contributions due to the images, but the more serious is
that the charge and current distributions induced on the
obstacle may no longer be similar to those experienced in
isolation.

When the obstacle is not near any of the waveguide
walls, only the first is of importance and may be taken into
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account with sufficient accuracy by quasistatic arguments,
the polarisabilities used being those of an isolated obstacle.
This can be expected to give an acceptable result for a
sphere suspended on the longitudinal axis of symmetry of
the waveguide, but for a sphere placed on the broad wall,
this can involve discrepancies between theory and measure-
ment in the order of 2:1.

A theoretical solution to this problem which gives better
agreement with experiments has been published [2]. It
relies on replacing the sphere lying on the face of the
waveguide by an equivalent half ellipsoid. That the reflec-
tion coefficient is capacitive and proportional to obstacle
volume is then readily determined. However, that this must
be the case for any small obstacle, whatever its shape, is
easy to see; the ball acts as a perturbation to remove
energy from the field in the region where the electric
energy density is the greater and, to the extent that this
field is uniform, the amount of energy removed is propor-
tional to the obstacle volume [3]. Given that determination
of the equivalent ellipsoid depends on ad hoc assumptions,
the nature of which would not be evident without knowl-
edge of the experimental result with which it is desired to
achieve correspondence, it is difficult to see that this solu-
tion adds much to fundamental understanding of the prob-
lem.

More recently, a finite-element solution has appeared [4].
This solution avoids the approximations and ad hoc as-
sumptions of [2], but leads only to a numerical result. The
present result takes form of an analytic formula which
thereby provides a greater physical insight into the prob-
lem.

IIL.
A. Formal Solution

THEORETICAL DEVELOPMENT

In this paper, we shall adopt a different approach. We
shall assume, as has already been made evident, that the
ball lies on the broad wall of the waveguide but with the
additional restriction that it is not too close to the narrow
walls. We then image the ball in the wall on which it lies so
that we are left to analyze the effect of a dumbbell-shaped
obstacle consisting of two osculating spheres which lies
along the horizontal centerline of a rectangular waveguide
having cross-sectional dimensions a X B, where B =2b.
Fig. 2 shows the result. If we determine the electric and
magnetic polarisability dyadics for this dumbbell, we can,
provided that it does not come too close to the side walls,
estimate the modifying effect on the exciting field of the
images by the usual quasistatic arguments.

Determination of the elements of the polarisability dy-
adics is to be the subject of a separate paper by Cashman
[5], and here we shall simply use his results in the endeavor
outlined above. We begin by outlining briefly the formal
solution to the problem, full details of which can be found
in standard texts [6]. We assume that the long axis of the
dumbbell les in the plane z=0. Then, the electric and
magnetic fields incident on the obstacle are

r —V'ts - z
E =V*e e Fr

H=v* (7’10 + 7lzlo)e_ﬂgmz

()
(4)
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Fig. 2. Doubled waveguide containing a dumbbell obstacle representing
the original guide and the sphere and images in the xz plane. New
dimension B = 2b. Sphere and its image have been moved off center to
distance ¢ from left-hand wall.

where
€= —.)A’kozo(m"oz?oﬁl_o)lﬂsm(%) ()
hio = %B1o ( EB_kO—ZZ_O,B:(; )stm(z%) (6)
h0= —Zj%(m)l/zws(faﬁ) (7)

are the normal mode functions for the H,, mode in an
a X B rectangular waveguide, and in which

B = ko\/l‘— (Ao/A.)* the guide wavenumber,

ko= 2{1 the free-space wavenumber,
0
Ay the free space wavelength,
A.=2a the cutoff wavelength, and
Z, the characteristic impedance of space.

The incident fields will induce in the dumbbell electric
and magnetic dipole moments

(3)
(©)

where A, 4, are dyadics to be determined which depend
on the electric and magnetic polarisabilities of the dumb-
bell and the disposition of its images. By symmetry, it is
clear that the principal axes of the dyadic must lie along
the x, y, and z axes, so that we may write

P= EOAe'Etl(x,y,z)=(c,O.0)

M= Am'I{zl(x,y,z)=(c,0,O)

A, = A, 3R+ Agyy 39 + A,y 22 (10)
Ay = Apyn iR Ay 99+ Ay 22, (11)

In terms of these components, (8) and (9) with (3) and (4)
give

(12)
(13)

5 _ 1t _
P=V EOAeyyelol(x,y)=(c,0)

M=v"* (Amxxillo + Amzz—ﬁzlo) }(x,y)=(C’0)'
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In z <0, these generate scattered fields
E =V e/Pr: (14)
H =V (= hy+hyy) P, (15)

Application of the Lorentz reciprocity theorem then serves
to show that

Vo= %jw[ﬂo(zw + 77:10)']‘_4‘ 510'P] !(x,y)=(c.0) (16)
whence the reflection coefficient

—V_

=

___Je 2 -z'”_c_(z>2 2 7
aBkoZo:Bw [N‘O{ﬁloAmxx Sy a a Amzzcos a

e k272 2 7C
€0k5ZyA,,, sin P ]

_[(Be, ko
2ab |\ kg Bio

1 )’ 9 TC
koﬁm(a) A4,,.,¢0s —a—]'

7C
2 at
Aeyy ) sin p

nmxx

(17)

For a ball on the center of the broad wall of the

waveguide (¢ = 1a), this simplifies to

_ ko }
kO mxx ﬁlO eyy |

(18)

_ ko | P
I‘__2ab[ 4

This completes the formal solution of the problem. It
remains only to determine certain components of the
4.4,

B. Determination of the Polarisability Dyadics

Provided that the dumbbell and its images are suffi-
ciently separated, the presence of the images does not
cause current and charge patterns to be induced which
differ substantially from those which occur in isolation,
and it has been shown that the elements of the 4,, 4,
dyadics may be written as

A Xe muu

e muu= —
’ 1 Ce,muae,muu

(19)

where u=x,y,z and «, ,,, are the corresponding ele-
ments of the electric or magnetic polarisability dyadic for
an isolated dumbbell. C, ,, is an interaction constant,
considered again below, which takes into account that the
exciting field is modified by the presence of the images.
The dyadic elements a,,,, «,,,,, and a,_. have been
determined by Cashman [5] using a quasistatic approach
Justified by the fact that the dumbbell is electrically small.
Under an imposed field, a charge separation (in the case of
a magnetic field, a separation of hypothetical magnetic
charge) takes place, determined by appropriate boundary
conditions. The boundary condition is expressed as an
integral equation which is solved numerically for the charge
distribution. The dipole moment is found from the charge
distribution and the polarisability elements «, ,,,, then
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Fig. 3 y-directed electric dipole within the doubled waveguide (shown

in heavy lines) and its images in the conducting walls.

follow. The results are

a,,, = 59.65r (20)

(21)
It is interesting to compare these results with those ob-
tained by simply doubling up the corresponding polarisa-
bilities of an isolated sphere. If we did this, we would get
a,,,=2513r a,. . =a,, =—12.57r3 To do so is to fail
to take account of the changes in the charge and current
distributions on the ball which result from its immediately
adjacent image in the broad wall on which it rests. The
resulting errors are seen to be very significant.

To determine the interaction constants, we follow the
quasistatic theory of Collin [6]. Consider first the y-
directed electric dipole moment. This images positively in
the broad walls of the guide (to which it is perpendicular)
and negatively in the narrow (to which it is parallel). The
result is the alternate lines of positively and negatively
directed dipoles shown in Fig. 3 which form the basis to
determine the component of the polarizing field at the
dumbbell due to its images. For this case, we find that

Uy = 0y, = — 140273,

Gy 2217;[514'5'2 =83 — 5] (22)
where
o 2 2(2nB)’—(2ma)?
5o ) 23
W [(21B)"+ (2ma)] )
S, = i 3 2(2nB —2b) _(2ma)5 2 (24)
m=-—00 n=—00 [(2nB—2b)2+(2ma)2] ’
2 & 22nB—(2ma—2c)?
5o - (@
,,E’m:_w [(2nB)z+(2ma—20)2]5/~ )
s= %% _22nB-20)-(@ma-2c)’
¥ m=—00 n=—00 [(2UB—2b)2+(2ma_26)2]5/2‘

(26)

The superscript prime on the first of the summations
indicates that the » = 0 term is to be omitted. These series
are readily summed to convergence by computer.
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Turning now to the magnetic dipoles and considering the
x-directed dipoles first, we observe that we have a situation
exactly analogous to that just considered. This follows
because the dipole images positively in the walls to which it
is parallel and negatively in those to which it is perpendicu-
lar. Hence, we have at once that C,, =C,,. This leaves
only the z-directed magnetic dipoles to consider. These lie
parallel to the broad and narrow walls of the guide and so
all the images are positive. Hence, we have

1

(27)
Note that, because they all lie on z = 0, there is no interac-
tion between the x- and z-directed sets of magnetic di-
poles. ‘

Inserting these results into (18), we see that the reflection
coefficient is indeed capacitive and to the lowest order in r
is proportional to 3. However, if our result is expanded as
a power series in r, the next term will involve ®. This is to
be contrasted with Somlio and Hollway’s empirical formula
which, if rewritten as a power series, has a second term
with an 7 dependence. This may perhaps be reconciled by
noting that the empirical result applies to a range of ball
sizes extending beyond that for which it is valid simply to
replace the ball by electric and magnetic dipole moments
located at its center, the higher order multipoles needing to
be considered in a complete solution.

" IV. SoME RESULTS

Using our formula (18) we have computed |I'| as a
function of ball diameter at band center (9.6 GHz) in
WG16 (RG52/U) for which a = 22.86mm (0.900 in), b=
10.16mm (0.400 in). It is shown in Fig. 4, where it is
compared with the results of Somlo and Hollway, both
their measurements and their empirical formula. The agree-
ment is seen to be very good for any ball below Smm in
diameter or, to put it another way, for any reflection
coefficient with a magnitude below 0.5. Given the intended
use of the device—for Vernier matching—it is seen that
the theory gives an adequate description of its performance
over all practical ball sizes.

In Fig. 5, we present for 3-mm and 4-mm-diam balls
located on the center of the broad wall of WG16 a portrayal
of |I'| against frequency in the range 8—11 GHz. The result
supports Somlo and Hollway’s assertion of the relative
insensitivity of the reflection coefficient to frequency.
Lastly, also for 3-mm and 4-mm-diam balls but this time at
band center, we present in Fig. 6 the result of moving the
ball transversely in the guide over the range a/4 <c¢<
3a /4, this being about as close to the narrow wall as it is
possible to bring the ball and still use polarisabilities
calculated for an isolated dumbbell. It is observed that,
rather than having to replace the ball in order to vary the
reflection coefficient, useful variation can be achieved sim-
ply by moving it off guide center. The reflection coefficient
falls off because the exciting fields, and therefore the
dipole moments which they produce, are generally weaker
off center. This does not, of course, apply to the z-directed
magnetic dipole moment, which is strongest at the edge of
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Fig. 4. Reflection coefficient magnitude |I'| as a function of ball diame-
ter d. Circles are experimental points of Somlo and Hollway. Full curve
is (1). Dashed curve is present theoretical result (2) with ball on the
center of the broad face of WGL6 guide. Frequency is 9.6 GHz.
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Fig. 6. |T| as function of distance ¢ from narrow face of WG16 guide

for two-ball diam. Frequency is 9.6 GHz.

the guide, but the effect of which in the expression for |I'|
is subtractive from that due to the x-directed magnetic
dipole.

V. CONCLUSION

This paper has considered the problem of computing the
reflection coefficient produced by a conducting ball when
in contact with the broad wall of a rectangular waveguide,
a device which has been proposed as a convenient match-
ing element. It has been shown that the reflection coeffi-
cient is capacitive, to the lowest order proportional to the
cube of the ball radius, and, for a given size ball, is



586

relatively insensitive to frequency. These conclusions con-
firm earlier empirical work by Somlo and Hollway. The
solution is based on the replacement of the ball by a set of
electric and magnetic dipole moments located at it center.
Strictly, it is therefore applicable only to small balls, but
comparison with measurement shows that it is adequate up
to the largest likely to be used in practice as a matching
clement.
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